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James Clerk Maxwell

James Clerk Maxwell 
(1831-1879)

Maxwell (Scottish) unified electricity 
and magnetism in 1864 with his now 
famous equations and showed that 
light is an electromagnetic wave
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where      is the electric field,      is the magnetic field, 
and c is the velocity of light in vacuum.
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Outline

 What are waves?
 1-D wave

 Phase, phase front, and phase velocity

 Plane waves

 Why are EM waves transverse?

 Energy, Poynting vector, and intensity
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 What are waves?
 1-D wave

 Phase, phase front, and phase velocity
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What are waves?

Anything that moves

Variable of both time and space

A way of energy delivery
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What is a wave?

A wave is anything that moves.

Linear translation:  f(x) to f(x-a).

f(x - v t)

f(x + v t)

If a = v t, where v is positive and t is 
time, time-dependent displacement.

So               represents a rightward, or 
forward, propagating wave.

Similarly,                represents a leftward, 
or backward, propagating wave.
v will be the velocity of the wave.

f(x)
f(x-3)

f(x-2)
f(x-1)

x0        1        2        3
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The 1-d wave equation and its solution
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We already derived the wave equation. 
Here is the one-dimensional form for scalar functions, f :

The electric fields of light waves will be a solution to this 
equation.  And v will be the velocity of light.

where f (u) can be any twice-differentiable function.

( , ) ( v )f x t f x t 

The wave equation has the simple solution:
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Proof that f (x ± vt) solves the wave equation

Write f (x ± vt) as  f (u), where u = x ± vt. So            and 1u
x
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Now, use the chain rule:

f f
x u
 


 

vf f
t u

 
 
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 
So  , and 

Substituting into the wave equation:
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Simple solution to the wave equation

Which has a simple sinusoidal solution:
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The same is true for the magnetic field.
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Definitions: Amplitude and Absolute phase

A = Amplitude

 = Absolute phase (or initial phase)

( , ) cos( )E z t t kA z   

2π

A
z

Absolute 
phase 
ϕ = 0

Absolute 
phase 
ϕ = 2/3 π
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Definitions 

 Spatial quantities
 Wave/phase front 

Let’s take a picture!
(Fixed t=0)

( , ) cos( )E z t A t kz 

( , ) cos( )E z t A kz

z

z
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Definitions 

 Temporal quantities

Let’s put a point detector!
(Fixed z=0)

t

( , ) cos( )E z t A t kz 

( , ) cos( )E z t A t

z
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Definitions 

 Spatial quantities
 Wavelength 

 Wavenumber 

 Propagation constant k=2

 Temporal quantities
 Period T

 Frequency f=1/T

 Angular frequency 

z

T
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The phase velocity

How fast is the wave traveling?  

Velocity is a reference distance
divided by a reference time.

The phase velocity is the wavelength/period:   v =   / 

Since f= 1/:

In terms of the k-vector, k = 2/ , and 
the angular frequency,  = 2/ , this is:

v = f

v =  / k 

z
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 Plane waves
 Definition

 Field vs. propagation direction
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The 3-D wave equation: vectorial!

which has the solution:

where

and
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A light wave can propagate in any direction in space. So 
we must allow the space derivative to be 3D:

 , ,x y zk k k k


 , ,r x y z


( )
0

ˆ ˆ( , ) exp j t k rE r t E    
 
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Plane waves

 Uni-directional wave: assume propagating along 

 Constant perpendicular phase front

 Vector Helmholtz’s equation

 Three scalar Helmholtz’s equations

ˆza
( , ), ( , ), ( , )x y zE z t E z t E z t
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Solution to scalar Helmholtz’s equation

 Only look at scalar Helmholtz’s equation at Ex for example

2 2 0x xE k E  

( , )xE z t
z2 2 2

2
2 2 2 0xk E
x y z
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0 0( , ) cos( ) cos( )xE z t E t kz E t kz      
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Plane wave

The wave-fronts are equally spaced, a wavelength apart.

They're perpendicular to the propagation direction.

Wave-fronts 
are helpful for 

drawing 
pictures of 
interfering 

waves.

A wave's 
wave-fronts 

sweep along at 
the speed of 

light.

A plane wave’s contours of maximum field, called wave-fronts
or phase-fronts, are planes.  They extend over all space.

Usually, we just 
draw lines; it’s 

easier.

0
ˆ ˆ( , ) Re{ exp[ ( )]}E x t E j t kz 
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Wave that really moves!

 Plane wave
 How to generate such movie?

Lot’s of knowledge
behind these movies
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 Why are EM waves transverse
 E and B field orientation

 Strength of magnetic field
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Why are light waves transverse?

Suppose a wave propagates in the z-direction

0yx EE
x y


 

 

0yx z
EE E

x y z
 

  
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0zE
z





Substituting the zero values, we have:

So the longitudinal fields are at most constant, and not waves.

( , )zE z t

Then it’s a function of z and t (and not x or y), so all x- and y-
derivatives are zero:

0E 
 

In vacuum:
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The magnetic field direction?

Suppose a wave propagates in the z-direction and has its 
electric field along the x-direction, so Ey = Ez= 0, and Ex = Ex(z,t)

What is the direction of the magnetic field?

Use:

So: 

In other words:

0, ,0xEB
t z

       



y xB E
t z

 
 
 

, ,y yx xz zE EE EB E EE
t y z z x x y

     
              


 

the magnetic field

is in the y-direction.
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The strength of magnetic-field?

0

    ( , ) ( ,0)

t

x
y y

EB z t B z dt
z


 

We can integrate:

Take By(z,0) = 0

   0, expxE z t E j t kz    y xB E
t z

 
 

 
Start with: and

 0( , ) exp ( )y
jkB z t E j t kz
j




 

1( , ) ( , )y xB z t E z t
v



So:

But  / k = v:
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The strength of magnetic-field?

 Use phasor-domain Maxwell’s equations HjE



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assume in air
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Why we neglect the magnetic field

 The force on a charge, q, is:
particleF qE qv B 

 

magnetic particle

electrical light

F v
F v

 

So as long as a charge’s velocity is much less than the speed of light, we 
can neglect the light’s magnetic force compared to its electric force.

electricalF


magneticF


v v sin

v

B B

B

 





electric

particlmagn

al

etic eqv
E

F
F

B
q


The ratio of 
the magnitudes
of the two forces:
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Light is transverse electromagnetic wave

The electric (E) and magnetic (B) fields are in phase. 

The electric field, the magnetic field, and the propagation 
direction are all perpendicular

z, k

y
x
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Spherical wave

 Wave-front (phase front) that appear to be spherical

0
ˆˆ ( , ) exp[ ( )]EE x t j t k r
r

  
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 The energy of waves
 Energy density

 Intensity (irradiance) 
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The energy density of lightwave

The energy density of an electric field is:

The energy density of a magnetic field is:  

2

2

1
2
1 1
2

E

B

U E

U B









1v


 B E Using B = E/v , and                  , which together imply that                         

 2 21 1 1
2 2B EU E E U 


  Total energy density:

2
E BU U U E  

The electrical and magnetic energy densities in light are equal.
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The Poynting vector

The power (instantaneous) per unit area in a beam.

2 2
0 0ˆ cos ( )S zv E B t kz   



E B k 
 

A

v t

U = Energy density

0ˆ cos( )E xE t kz 


2

  
S v E B

E H
 

 

  

 0ˆ cos( )B yB t kz 


Energy passing through area A in time t:

=    U  V   =  U  A  v  t

So the energy per unit time per unit area:

=  U V / ( A t )  = U A v t / ( A t )
=  U v  =  v  E2 =    v2  E B

And the direction                     is reasonable.
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The irradiance (often called the intensity)

Intensity: A light wave’s 

average power per unit area.

/ 2

/ 2

1( , ) ( , ') '
t T

t T

S r t S r t dt
T




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2
0 0
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1
2

I r t S r t

v E B

  

 

 

 

2S v E B 
  

Substituting a light wave for the Poynting vector,                            

2 2
0 0( , ) cos ( )S r t v E B t k r    

   
The average of cos2 is 1/2:
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The irradiance (continued)

Since the electric and magnetic fields are perpendicular and

B0 = E0 / v, 21
0 02I v E B 
 

Remember: this formula only works when the wave is of the form:

becomes:

   0, expE r t E j t k r    
  

that is, when all the fields involved have the same t k r  
 

2

0 0
1
2

nI c E


2
0 0where  we used: /  and rv c n n     
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Summary

 What are waves?
 1-D wave

 Phase, phase front, and phase velocity

 Plane waves

 EM waves are transverse

 Energy, Poynting vector, and intensity
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